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Calculation of ground states of four-dimensional6J Ising spin glasses

Alexander K. Hartmann*
Institut für theoretische Physik, Bunsenstrasse 9, 37073 Go¨ttingen, Germany

~Received 21 April 1999!

Ground states of four-dimensional (d54) Edwards-Anderson Ising spin glasses are calculated for sizes up
to 7373737 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state
energy of the infinite system is extrapolated ase0

`522.095(1). Theground-state stiffness~or domain wall!
energyD is calculated. AuDu;LQS behavior withQS50.64(5) is found which confirms that thed54 model
has an equilibrium spin-glass-paramagnet transition for nonzeroTc . @S1063-651X~99!13710-3#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg, 02.10.Jf
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I. INTRODUCTION

Optimization methods have found widespread applicat
in computational physics. Among these the investigation
the low-temperature behavior of spin glasses@1# attracted
most of the attention within the statistical physics comm
nity. The reason is that despite its simple definition~see be-
low! its behavior is far from being understood. From t
computational point of view the calculation of spin-gla
ground states is very demanding, because it belongs to
class of computational-hard problems@2#. This means that
only algorithms are available for which the running time
a computer increases exponentially with the system size
this work a method recently proposed, thecluster-exact ap-
proximation~CEA! @3# is applied to four-dimensional Ising
spin glasses.

The model under investigation here consists ofN spins
s i561, described by the Hamiltonian

H[2(
^ i , j &

Ji j s is j , ~1!

where^•••& denotes a sum over a pair of nearest neighb
In this report simple 4D lattices are considered, i.e.,N5L4.
The nearest neighbor interactions~bonds! take independently
Ji j 561 with equal probability. Periodic boundary cond
tions are applied to the systems. No kind of external m
netic field is present here.

Four-dimensional Ising spin glasses have been inve
gated rather rarely. Most of the results were obtained
Monte Carlo ~MC! simulations at finite temperature; se
e.g., @4–10#. Here theT50 behavior is investigated, i.e
ground states are calculated. This has the advantage tha
does not encounter ergodicity problems or critical slow
down like in algorithms which are based on MC metho
Only one attempt@11# to address the four-dimensional~4D!
spin-glass ground-state problem is known to the author. B
as we will see later, the former results suffer from the pro
lem, that the true global minima of the energy were not o
tained. Furthermore, no analytic predictions of the grou
state energy have been noted by the author.
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The question of whether finite-dimensional Ising sp
glasses show an ordered phase below a nonzero trans
temperatureTc is of crucial interest. By MC simulations
around the~expected! transition temperature this question
hard to solve. Another way to address this question is
calculate thestiffnessor domain wall energyD5Ea2Ep,
which is the difference between the ground-state ener
Ea,Ep for antiperiodic and periodic boundary conditions
one direction@12,13#. Here the antiperiodic boundary cond
tions for calculatingEa are realized by inverting one plane o
bonds. For the other directions periodic boundary conditio
are applied always. This treatment introduces a domain w
into the system. If a model exhibits an ordered lo
temperature phase, the domain wall increases with grow
system size, which becomes visible through the behavio
D: the disorder-averaged stiffness energy shows a finite-
dependence

^uDu&;LQS. ~2!

A positive value of the stiffness exponentQS indicates the
existence of an ordered phase for nonzero temperature.
example a simpled52 Ising ferromagnet hasQS51. For
spin glasses, the stiffness exponent additionally plays an
portant role within the droplet-scaling theory@14–18#, where
it describes the finite-size behavior of the basic excitatio
~the droplets!.

Using this kind of analysis it was proven that the 2D sp
glass exhibits no ordering forT.0 @19#. For the three-
dimensional problem in a recent calculation@20#, by apply-
ing genetic CEA a value ofQS50.19(2) was found, which
shows that indeed thed53 model has a spin-glass phase f
nonzero temperature. Ford54 the existence of a finiteTc
'2.1 was proven rather early even by MC simulations@4,5#,
but the value for the stiffness-exponentQS is of interest on
its own. Recently@10# a value ofQS50.82(6) was found by
performing a MC simulation nearTc . In the work presented
here the value is obtained via ground-state calculations.

The paper is organized as follows. In the next section
algorithm applied here is briefly presented. The main sec
contains the results for the ground-state energy and the s
ness exponent. A summary is given at the end.
5135 © 1999 The American Physical Society
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II. ALGORITHM

The technique for the calculation is based on a spe
genetic algorithm@21,22# and on cluster-exact approximatio
@3#, which is an optimization method designed especially
spin glasses. Now a brief description of the method is giv

Genetic algorithms are biologically motivated. An op
mal solution is found by treating many instances of the pr
lem in parallel, keeping only better instances and replac
bad ones by new ones~survival of the fittest!. The genetic
algorithm starts with an initial population ofMi randomly
initialized spin configurations~5 individuals!, which are lin-
early arranged in a ring. ThennMi times two neighbors from
the population are taken~called parents! and two offspring
are created using the so called triadic crossover@23#. Then a
mutation with a rate ofpm is applied to each offspring, i.e.,
fraction pm of the spins is reversed.

Next, for both offspring the energy is reduced by applyi
CEA. The algorithm is based on the concept offrustration
@24#. The method constructs iteratively and randomly a n
frustrated cluster of spins, whereas spins with many unsa
fied bonds are more likely to be added to the cluster. T
noncluster spins act like local magnetic fields on the clus
spins. For the spins of the cluster an energetic minimum s
can be calculated in polynomial time by using grap
theoretical methods@25–27#: an equivalent network is con
structed@28#, the maximum flow is calculated@29,30#, and
the spins of the cluster are set to the orientations leading
minimum in energy. This minimization step is performe
nmin times for each offspring.

Afterwards each offspring is compared with one of
parents. The pairs are chosen in the way that the sum o
phenotypic differences between them is minimal. The p
notypic difference is defined here as the number of sp
where the two configurations differ. Each parent is repla
if its energy is not lower~i.e., better! than the corresponding
offspring.

After this creation of offspring is performednMi times
the population is halved. From each pair of neighbors
configuration that has the higher energy is eliminated. If
more than four individuals remain the process is stopped
the best individual is taken as a result of the calculation.

The whole algorithm is performednR times and all con-
figurations that exhibit the lowest energy are stored, resul
in ng statistical independent ground-state configurations.
method was already applied for the investigation of
ground-state landscape of 3D Ising spin glasses@31#.

The probability that a certain ground-state configuration
found by this method is not equal for all ground states@32#.
If one is interested in properties of the ground-state la
scape this bias has to be corrected by applying further m
ods@33#. However, here only the ground-state energy is m
sured. All ground states of a given configuration ha
exactly the same energy. Thus, the distributions of
ground states is not relevant and the raw genetic CEA a
rithm is sufficient.

III. RESULTS

In this section, at first the values for the simulation p
rameters, which are defined above, are presented. Then
finite-size behavior of the ground-state energy is inve
al
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gated. Finally, results for the stiffness energy are discuss
The simulation parameters were determined in the follo

ing way: For the system sizesL52,4,6,7 several differen
combinations of the parametersMi ,n,nmin ,pm were tested.
For the final parameter sets it is not possible to obtain low
energies even by using parameters where the calculation
sumes four times the computational effort. ForL53,5 the
parameter sets forL11 were used. Using parameter se
chosen this way genetic CEA calculates true ground sta
as shown in@20#. It should be pointed out that it is relativel
easy to obtain states, which exhibit an energy slightly ab
the true ground-state energy. The hard task is to obtain re
the global minimum of the energy.

Here pm50.1 andnR55 were used for all system size
Table I summarizes the parameters. Also the typical co
puter time t per ground-state computation on a 80 MH
PPC601 is given.

Ground states were calculated for system sizes up
7373737 for NL independent realizations~see Table I! of
the random variables. For each realization the ground st
with periodic and antiperiodic boundary condition in one d
rection were calculated. The remaining three directions
always subjected to periodic boundary conditions. One
extract from the table that for small system sizesL<4
ground states are rather easy to obtain, while theL57 sys-
tems alone required 6560 CPU-days. Using these param
on averageng.2.7 ground states were obtained for eve
system sizeL usingnR55 runs per realization.

The average ground-state energye0 per spin is shown in
Fig. 1 as a function of the system sizeL. Using a fit to
e0(L)5e0

`1aL2b the value for the infinite system is ex
trapolated, resulting in e0

`522.095(1) @a57.1(7),
b524.2(1)#. This value is compatible with the lower boun
of e052A2dln2'22.35 given by the random energy mod
@34#. The value calculated here is substantially smaller th
the resulte0

`522.054(3), which was obtained in@11# using
a pure genetic algorithm. This shows that in@11# the true
global minima were not found, which can be concluded a
from the fact that theree0(L) increases with growing system
size. Because the periodic boundary conditions impose a
tional constraints on the systems, the opposite behavio
expected, as found for the results presented here. For fu
comparison additionally some calculations were perform
by the author by simply rapidly quenching from random ch
sen spin configurations. By executing an analogous fi

TABLE I. Simulation parameters:L5system size,Mi5initial
size of population,n5average number of offspring per configur
tion, nmin5number of CEA minimization steps per offspring
t5typical computer time per ground state on a 80 MHz PPC6
NL5number of realizations of the random variables.

L Mi n nmin t ~sec! NL

2 16 1 1 0.04 10000
3 16 4 4 3 9000
4 16 4 4 14 2000
5 256 6 10 4800 1000
6 256 6 10 7300 1300
7 512 12 20 14000 400
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value ofe0
`522.04(2) is obtained. This shows that the r

sult from @11# seems to be only slightly better than the da
obtained by applying a very simple minimization method

The distribution of the stiffness energy, which is obtain
from performing ground-state calculations for systems w
either periodic or antiperiodic boundary conditions in o
direction, are shown in Fig. 2 forL55 and L57. With
increasing system size the distribution broadens. This me
that larger domain walls become more and more likely.
study this effect more quantitatively, in Fig. 3 the disord
averaged absolute value^uDu& of the stiffness energy is plot
ted as a function of the system sizeL. Also shown is a fit
^uD(L)u&;LQS, which results inQS50.64(5). Here, the sys-
tem sizesL52,3 were left out of the analysis, since they a
below the scaling regime. Because of the large sample s

FIG. 1. Average ground-state energye0 per spin as a function o
system sizeL. The line shows a fit toe0(L)5e0

`1aL2b resulting in
e0

`522.095(1) as an estimate for the ground-state energy of
infinite system.

FIG. 2. Distribution of the stiffness energyD5Ea2Ep for sys-
tem sizes 5353535 and 7373737. Ea and Ep are the total
ground-state energies for periodic and antiperiodic boundary co
tions in one direction, while for the other three directions alwa
periodic boundary conditions are imposed. Lines are a guide to
eyes only.
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the error bars are small enough, so we can be pretty sure
QS.0. It confirms earlier results from MC simulations@4,5#
that the 4D Edwards-Anderson spin glass exhibits a nonz
transition temperatureTc . The valueQS50.64(5) is com-
parable to a recent result from MC simulationsQS
50.82(6) @10#, given the facts that the system sizes a
rather small and the other result was obtained at finite te
perature near the transition pointTc'2.1 whereas here the
system is treated atT50. Additionally, the prediction from
droplet-scaling theoryQS,(d21)/251.5 @17# is fulfilled.

It should be pointed out that the method described ab
does not guarantee finding exact ground states, although
method for choosing the parameters makes it very likely
states with a slightly higher energy are obtained, the re
for e0

` is not affected very much. For the stiffness energy
was shown in@20# that the result is very reliable as well, a
long as the energies of the states are not too far away f
the true ground-state energies.

IV. CONCLUSION

Results have been presented from calculations of a la
number of ground states of 4D Ising spin glasses. They w
obtained using a combination of cluster-exact approximat
and a genetic algorithm. Using a huge computational effo
was ensured that true ground states have been obtained
a high probability.

The finite-size behavior of the ground-state energy a
the stiffness energy have been investigated. By performin
L→` extrapolation, the ground-state energy per spin for
infinite system is estimated to bee0

`522.095(1). Theabso-
lute value of the stiffness energy increases with system
and shows âuD(L)u&;LQS behavior withQS50.64(5). For
systems with a Gaussian distribution of the bonds qual
tively similar results are expected, since the ordering beh
ior depends only on the sign of the interactions and not
their magnitudes.

e

i-
s
e

FIG. 3. Average stiffness energŷuDu& as function of system
size L on a log-log scale. The line represents the functionuD(L)u
5aLQS with QS50.65(4). Theincrease of̂ uDu& with system size
indicates that for 4D Ising spin glasses an ordered phase e
below a nonzero temperatureTc .
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5138 PRE 60ALEXANDER K. HARTMANN
A more detailed study of the ground-state landscape
4D systems, similar to@31#, requires more thannG'3
ground states per realization to be calculated. Since this
quires a substantial higher computational effort, it remains
be done for the future.
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